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NUMERICAL SIMULATION OF A SUPERSONIC FLOW

WITH TRANSVERSE INJECTION OF JETS

UDC 532.526A. O. Beketaeva and A. Zh. Naimanova

A plane supersonic flow with symmetric perpendicular injection of jets through slots in the walls is
numerically simulated with the use of Navier–Stokes equations. The effect of the jet pressure ratio
and Mach number on the flow structure is considered. The angle of inclination of the shock wave
and the separation-region length are found as functions of the jet pressure ratio. The influence of
the jet pressure ratio on the increase in the lift force arising owing to interaction of the flow with the
injected jet is found.

Key words: supersonic flow, jet injection, Navier–Stokes equations.

Introduction. Injection of a transverse jet into a supersonic flow generates a lift force normal to the surface
of the flying vehicle. The use of this force for flow control is attractive because of its effectiveness and fast response
at an arbitrary flight altitude. It follows from physical considerations that the interaction force depends on the
parameters of the injected jet.

The flow around jets and obstacles has been comprehensively considered in experiments [1–4]. Among
theoretical works, the papers with numerical simulation of transverse injection of hydrogen in the duct of an air-
breathing engine should be mentioned [5–7]. These papers, however, describe mainly test computations and do not
involve numerical simulations of the effect of some parameters of practical importance, such as the Mach number,
slot width, and jet pressure ratio, on the flow structure. The reason is the complicated character of the flow in the
injection region: there are separation regions both ahead of the jet and behind it. In this case, full Navier–Stokes
equations should be used.

In the present paper, we consider a plane supersonic flow with perpendicular injection of jets from slots
located symmetrically on the lower and upper walls of the channel. For convenience of computations, jet injection
from the lower wall only is considered. The flow pattern is shown in Fig. 1.

Formulation of the Problem. The initial system consists of two-dimensional Navier–Stokes equations for
a turbulent compressible gas flow, which is written in the Cartesian coordinate system in a conservative form:
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Fig. 1. Flow pattern.
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Here, u and w are the components of flow velocity in the longitudinal and transverse directions, ρ is the density,
P is the pressure, T is the temperature, E is the energy, cv is the specific heat at constant volume, γ is the ratio
of specific heats, M0 and M∞ are the jet and flow Mach numbers, µt is the turbulent viscosity, Re is the Reynolds
number, and Pr is the Prandtl number; the subscripts ∞ and 0 refer to the flow and jet parameters, respectively.

The initial system (1) is written in a dimensionless form. The governing parameters are the parameters at
the entrance (u∞, ρ∞, and T∞), the pressure and total energy are normalized to ρ∞u2

∞, and the reference length
is the slot width.

System (1) is closed by the Baldwin–Lomax algebraic model of turbulence [8].
The boundary conditions have the following form:
— at the entrance (x = 0, 0 6 z 6 H),

u = 1, w = 0, ρ = 1, T = 1;

— on the lower wall (z = 0, 0 < x 6 L),

u = 0, w = 0,
∂T

∂z
= 0,
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— on the slot (z = 0, Lb 6 x 6 Lb + h),
u = 0, T = 0.6, w =

√
T M0/M∞, P0 = nP∞

(n = P0/P∞ is the jet pressure ratio, P0 is the jet pressure, and P∞ is the flow pressure);
— a boundary layer on the wall is set in the input section, and the profile of longitudinal velocity is

approximated by a power law [9];
— the following condition of symmetry is imposed on the upper wall (z = H, 0 < x 6 L):

w = 0,
∂u

∂z
= 0,

∂ρ

∂z
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∂T

∂z
= 0

— nonreflecting conditions are set at the exit [10].
Method of the Solution. To take into account the flow in the boundary layer, near the wall, and near

the slot, i.e., in regions of high gradients, more accurately, we refine the grid in the longitudinal and transverse
directions by the transformations

ξ = ξ(x), η = η(z). (2)

Equations (1) acquire the following form in the generalized coordinates:
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and J = ∂(ξ, η)/∂(x, z) is the Jacobian of mapping.
In what follows, the tilde is omitted for convenience.
System (3) linearized with respect to the vector U is solved by the Beam–Warming method:
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Here,
En+1 ≈ AnUn+1, F n+1 ≈ BnUn+1; (5)

A = ∂E/∂U and B = ∂F /∂U are the Jacobian matrices [12].
The terms containing the second derivatives are presented as sums of two vectors
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For flux vectors with mixed derivatives, we use explicit approximation with a uniform time step:

V n+1
2 = 2V n
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2 + O(∆t2), W n+1
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With allowance for (5)–(7), system (4) becomes
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Applying factorization to (8), we obtain two one-dimensional operators, which are resolved by matrix sweep:
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[RHSn is the right side of Eq. (8)].
In approximation of derivatives in convective and diffusion terms, we use second-order central-difference

operators.
Analysis of Results. The parameters of coordinate transformation (2) have the form [12]
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β and τ are refinement factors (β > 1 and τ > 1), a is the height of the computational domain in the generalized
coordinates, and xc is the point with respect to which grid refinement is performed. To suppress high-frequency
disturbances, second-order smoothing with a small coefficient ε at smoothing terms was introduced into solution
(9). The computation was performed on a 101× 61 space grid with respect to spatial coordinates.

To test the numerical method, we first computed a test problem: perpendicular injection of a gas with the
parameters M0 = 1, T = 217 K, and P = 1.24 MPa through a slot 0.0559 cm wide into an air flow with M∞ = 2.9,
T = 108 K, and P = 0.0663 MPa in a rectangular-section channel. The channel height and length were 7.62 and
15 cm, respectively. The slot was located at a distance of 10 cm from the input section. The results of the numerical
experiment were in satisfactory agreement with experimental data and numerical calculations of other authors [5, 6].

Figures 2–6 show the results of numerical calculations of the problem with the parameters M∞ = 4, M0 = 1,
Pr = 0.9, Re = 104, and γ = 1.4.

The distributions of isobars for two values of the jet pressure ratio are shown in Fig. 2. Because of deceleration
of the incoming flow, the pressure ahead of the jet increases, and a bow shock wave (indicated by 1 in Fig. 2) is
formed. An oblique shock wave 2 emanates upstream from the bow shock wave. In addition to the separation region,
there is also a supersonic flow region behind the oblique shock wave; subsequent flow deceleration is accompanied by
emergence of a second shock wave: barrel shock 3 parallel to the jet axis. It follows from Fig. 2 that the detached
shock wave, oblique shock wave, and barrel shock wave intersect at one point to form a complicated λ-shaped
structure of shock waves 4. The pressure along the front boundary of the jet is not constant. As it follows from the
experiment of [3], this pressure is maximum in the region behind the triple point, in particular, behind the barrel
shock wave. It is seen from the distributions of isobars that the pressure maximum (Pmax = 0.15 in Fig. 2a and
0.24 in Fig. 2b) is located behind the lower part of the barrel shock wave.

An analysis of the influence of the jet pressure ratio on the bow shock wave shows that the angle of inclination
of the latter increases with increasing pressure ratio behind the shock wave and ahead of it (cf. Figs. 2a and 2b).
The effect of the jet pressure ratio on the angle of inclination of the bow shock wave is illustrated in Fig. 3
[α = arctan (max (w/u))].

The velocity-vector field for two values of the jet pressure ratio is shown in Fig. 4. The zone adjacent to
the wall contains two vortices formed as a result of primary and secondary separations of the flow from the wall
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Fig. 2. Field of isobars for n = 4 (a) and 10 (b).
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Fig. 3. Effect of the jet pressure ratio on the angle of inclination of the bow shock wave (curves 1
and 2) and reflected shock wave (curves 3 and 4): M0 = 1 (1 and 3) and 2 (2 and 4).

upstream of the jet. The vortices rotate in the opposite directions because part of the air flow immediately near the
wall passes through shock-wave portions, turns downward to the wall, penetrates into the separated-flow region,
and spreads in the opposite directions. The vortex located closer to the jet moves anticlockwise, and the vortex
located at a greater distance moves clockwise, which agrees with the experimental results of [1]. It is also well seen
in Fig. 4 that the velocity vector deviates upward because of the presence of the oblique and bow shock waves,
and this deviation increases with increasing jet pressure ratio, as it follows from the comparison of Figs. 4a and
4b. The vortex zone ahead of the jet is significantly greater than the separation region behind the jet. Apparently,
boundary-layer separation ahead of the jet is conditioned by two factors: opposite pressure gradient and bow shock
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Fig. 5. Effect of the jet pressure ratio on the separation-region length for
M∞ = 3, Pr = 0.9, Re = 1.87 · 107, γ = 1.4, and slot width of 14 mm:
M0 = 1 (1) and 1.5 (2); the point show the experimental results of [1].

wave–boundary layer interaction. The separation region behind the jet in a supersonic flow is additionally affected
by the rarefaction zone [5]. For a jet pressure ratio n = 10 (Fig. 4b), the separation region ahead of the jet is much
greater than for n = 4 (Fig. 4a), which also confirms the influence of the bow shock wave on vortex-zone formation.

A numerical analysis shows that the scheme of the flow around the jet is equivalent to the flow pattern
around a cylinder whose diameter is equal to the slot width and which is mounted on the wall at a certain angle
[4]. This similarity was established in the experiments of [2]. In the experiments of [1, 3], the normal shock was
observed instead of the barrel shock. The reason is that the experiments of [1, 3] were performed with very high
jet pressure ratios (n = 50–200).
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The force of interaction is an integral of the product of excess pressure in the separation region and an area
element. The lift force is determined from the pressure distribution on the wall by the formula

F =
∫
ls

(P − P∞) dls,

where ls is the separation-region length. It follows from the calculation results that F = 2.88 and 4.03 for n = 4
and 10, respectively, i.e., a 2.5-fold increase in the jet pressure ratio leads to a 1.4-fold increase in the lift force.

The separation-region length versus the jet pressure ratio for M∞ = 3, Pr = 0.9, Re = 1.87 ·107, and γ = 1.4
is compared with the experimental data of [1] in Fig. 5. It should be noted that the experiment corresponded to a
three-dimensional case. The qualitative pattern for a two-dimensional case is similar to a three-dimensional case,
but the values of ls are higher, which is explained by the absence of lateral spillage.

The flow structure near the jet is illustrated in Fig. 6, which shows the distribution of the local Mach number
M =

√
u2 + w2 /c (c is the local velocity of sound). In the case with n = 10 (Fig. 6b), the jet entering the flow

with a sonic velocity becomes supersonic at a certain distance because of the drastic acceleration immediately after
injection; in this process, the Mach number increases to 1.9. Then, the boundary of the supersonic region is closed,
forming a circle. Apparently, this circle corresponds to the barrel, which is a consequence of interaction of the
system of shock waves separating supersonic and subsonic regions in the jet itself. A similar barrel was obtained
in the numerical calculations of [7] with the Mach disk corresponding to the upper boundary of the barrel. The
flow behind the barrel is decelerated and becomes subsonic with a Mach number M = 0.8. Finally, the jet flow
is accelerated and passes to a supersonic region, and the Mach numbers increase to M = 3 and higher, which
corresponds to the value of M in the main flow. A significant increase in the circle size is observed, depending on
the jet pressure ratio. In particular, for the lower value n = 4 (Fig. 6a), the flow is not accelerated so sharply, and
the Mach number inside the barrel increases to 1.2 only.
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